TD 3: Semantic security, PRFs, CPA security

Exercise 1. [Introduction to Computational Hardness Assumptions - review]

A group \mathbb{G} is called *cyclic* if there exists an element g in \mathbb{G} such that $\mathbb{G} = \langle g \rangle = \{g^n | n \text{ is an integer }\}$. Such an element g is called a *generator* of \mathbb{G} .

Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of prime order q, and let g be a public generator of \mathbb{G} . The decisional Diffie-Hellman distribution (DDH) is, $D_{\text{DDH}} = (g^a, g^b, g^{ab}) \in \mathbb{G}^3$ with a, b sampled independently and uniformly at random in \mathbb{Z}_q .

Definition 2 (Decisional Diffie-Hellman assumption). *The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between* D_{DDH} *and* (g^a, g^b, g^c) *with a, b, c sampled inde-pendently and uniformly at random in* \mathbb{Z}_q .

- 1. Does the DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p, +)$ for $p = \mathcal{O}(2^{\lambda})$ prime?
- 2. Consider cyclic group \mathbb{Z}_p . We want to see whether DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p^*, \times)$ for some p prime. The *square root* of $x \in \mathbb{Z}_p$ is a number $y \in \mathbb{Z}_p$ s.t. $y^2 = x \mod p$. An element $x \in \mathbb{Z}_p^*$ is called a *quadratic residue* (QR) if it has a square root in \mathbb{Z}_p . We introduce Legendre symbol:

for
$$x \in \mathbb{Z}_p$$
, $\left(\frac{x}{p}\right) := \begin{cases} 1, & \text{if } x \text{ is a QR in } \mathbb{Z}_p \\ -1, & \text{if } x \text{ is not a QR in } \mathbb{Z}_p \\ 0, & \text{if } x \equiv 0 \mod p \end{cases}$

- (a) Let *g* be a generator in \mathbb{Z}_p^* . Prove that $g^{p-1} = 1$.
- (b) Prove that $\left(\frac{x}{p}\right) = x^{\frac{p-1}{2}}$ in \mathbb{Z}_p^* .
- (c) Let $x = g^r$ for some integer r. Prove that x is a QR in \mathbb{Z}_p^* if and only if r is even. What can you say about the distribution of $\left(\frac{g^r}{p}\right)$ if r is uniformly sampled over $\{0, \dots, p-1\}$?
- (d) Does the DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p^*, \times)$ of order p 1?
- 3. Now we take \mathbb{Z}_p such that p = 2q + 1 with q prime (also called a *safe-prime*). Let us work in a subgroup \mathbb{G} of order q in (\mathbb{Z}_p^*, \times) .
 - (a) Given a generator g of G, propose a construction for a function Ĝ: Z_q → G × G (which may depend on public parameters) such that Ĝ(U(Z_q)) is computationally indistinguishable from U(G × G) based on the DDH assumption on G (where, in G(U(Z_q)), the probability is also taken over the public parameters of Ĝ).
 - (b) What is the size of the output of \hat{G} given the size of its input?
 - (c) Why is it not a pseudo-random generator from $\{0,1\}^{\ell}$ to $\{0,1\}^{2\ell}$ for $\ell = \lceil \lg q \rceil$?

Exercise 2. [Learning with errors]

Definition 3 (Learning with Errors). Let $\ell < k \in \mathbb{N}$, $n < m \in \mathbb{N}$, $q = 2^k$, $B = 2^\ell$, $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{LWE,\mathbf{A}} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftrightarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^m \cap \mathbb{Z}^m\right)$.

The *LWE assumption* states that, given suitable parameters k, ℓ, m, n , it is computationally hard to distinguish $D_{LWE, \mathbf{A}}$ from the distribution $(\mathbf{A}, U(\mathbb{Z}_q^m))$.

Let us consider the private-key encryption scheme below, which works under the following public parameters: k, ℓ , m, n, A, for which the LWE_A holds.

Note. Here, "mod q"'s range is $\left[-\frac{q}{2}, \frac{q}{2}-1\right] \cap \mathbb{Z}$ and not the usual $[0, q-1] \cap \mathbb{Z}$ to ease the description of the scheme.

Keygen (1^{λ}) : from 1^{λ} , this algorithm outputs a random vector $\mathbf{s} \leftarrow U(\mathbb{Z}_{a}^{n})$ as a secret key.

- **Enc**_s(m): from the secret key **s** and a message $\mathfrak{m} \in \{0,1\}^m$, the algorithm Enc samples a random vector $\mathbf{e} \leftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^m \cap \mathbb{Z}^m\right)$ and outputs $\mathbf{c} = \mathbf{As} + \mathbf{e} + \frac{q}{2}\mathfrak{m} \mod q$ as a ciphertext.
- **Dec**_s(c): from the secret key s and a ciphertext c, the decryption algorithm computes $\mathbf{v} = \mathbf{c} \mathbf{A} \cdot \mathbf{s}$. Then Dec constructs the message m' from v: for each component of v, sets the corresponding component of m' as follows: 0 if $\frac{-q}{4} \le v_i \le \frac{q}{4}$, and 1 otherwise.
 - 1. Prove the correctness of this cipher.
 - 2. Show that this cipher is computationally secure.

If you take a look at this cipher, you can view it as a one-time pad on $\frac{q}{2}\mathfrak{m}$, which means that the message is hidden in the most significant bit of $\mathbf{e} + \frac{q}{2}\mathfrak{m}$. Now, if one wants to hide the message in the least significant bit of the OTP, one solution is to encrypt a message as: $\mathbf{c} = 2 \cdot (\mathbf{A} \cdot \mathbf{s} + \mathbf{e}) + \mathfrak{m} \mod q$.

- 3. Construct a "decryption" algorithm that does not use the secret key to compute m.
- 4. Why is it also a bad idea to encrypt as $\mathbf{c} = \mathbf{A} \cdot \mathbf{s} + 2\mathbf{e} + \mathfrak{m}$?

Exercise 3. [A weak-PRP is PRF]

Definition 4. Weak PRP. A function $F : \{0,1\}^s \times \{0,1\}^n \rightarrow \{0,1\}^n$ is said to be a Pseudo-Random Permutation (PRP) if

- For any $k \in \{0,1\}^s$, the function $F_k : x \mapsto F(k,x)$ is a permutation (i.e., a bijection from $\{0,1\}^n$ to $\{0,1\}^n$).
- All PPT algorithms A have a negligible advantage in the following game

\mathcal{C}	\mathcal{A}
$b \leftarrow U(\{0,1\})$	
$k \hookleftarrow U(\{0,1\}^s)$	
if $b = 0$, then $F = F(k, \cdot)$	
else <i>F</i> is a uniformly chosen permutation of $\{0,1\}^n$	
	sends x to C (polynomially many queries)
sends $F(x)$ to \mathcal{A}	
	outputs a bit $b' \in \{0, 1\}$

where $Adv_A^{\text{weak-PRP}}(F) = |\Pr\{b' = 1|b = 1\} - \Pr\{b' = 1|b = 0\}|.$

Remark. A PRP is very similar to a PRF, except that it is a bijection, and it should be indistinguishable from a uniform bijection (while a PRF should be indistinguishable from a uniform function).

The objective of this exercise is to show that a PRP is also a PRF. We will first show that a PPT algorithm cannot distinguish between a random function and a random permutation with non negligible advantage. Let A be a PPT algorithm with running time at most t. We want to show that A has negligible advantage in the following game.

$\mathcal C$	\mathcal{A}
$b \hookleftarrow U(\{0,1\})$	
if $b = 0$, then <i>F</i> is a random permutation of $\{0, 1\}^n$	
else <i>F</i> is a random function from $\{0,1\}^n$ to $\{0,1\}^n$	
	sends x to C (polynomially many queries)
sends $F(x)$ to \mathcal{A}	
	outputs a bit $b' \in \{0, 1\}$

- 1. Give a pseudo-code algorithm for implementing C in the case where F is a random function and in the case where F is a random permutation.
- 2. Show that the advantage of A in distinguishing whether F is a random permutation or a random function is at most the probability that A finds a collision when F is a random function. In other words, show that

 $|\Pr{A \text{ outputs 1} | F \text{ is a random function }} - \Pr{A \text{ outputs 1} | F \text{ is a random permutation }} \le \delta$

where δ is the probability to find a collision when sampling *t* independent uniform elements in $\{0,1\}^n$ (that is, $\delta = \Pr_{y_1, \dots, y_t \leftarrow \mathcal{U}(\{0,1\}^n)} \{ \exists i \neq j \text{ s.t. } y_i = y_j \}$).

- 3. Show that $\delta \leq \frac{t^2}{2^n}$
- 4. Show that if $n \ge \lambda$ (the security parameter), then any pseudo-random permutation is also a pseudo-random function.

Exercise 4. [Increasing the advantage of an attacker - review]

Let *G* be a pseudo-random generator from $\{0,1\}^s$ to $\{0,1\}^n$ for some integers *s* and *n*. Let $i \in \{1,...,n\}$ and let *A* be a PPT algorithm such that, for all $k \in \{0,1\}^s$, we have:

$$Pr[\mathcal{A}(G(k)_{1\cdots i-1}) = G(k)_i] \ge \frac{1}{2} + \epsilon$$

where the probability runs over the randomness of \mathcal{A} . Note that unlike the definition of the advantage seen in class, here we consider only the probability over the randomness of \mathcal{A} and not over the random choice of k (we will see why later). Our objective is to construct a new attacker \mathcal{A}' with an advantage arbitrarily close to 1 (for instance $Pr[\mathcal{A}(G(k)_{1:i-1}) = G(k)_i] \ge 0.999$ for all $k \in \{0,1\}^s$).

1. Propose a method to improve the success probability of \mathcal{A}

Let *m* be some integer to be determined. Let A' be an algorithm that evaluates A on $G(k)_{1..i-1}$ 2m + 1 times, to obtain 2m + 1 bits $b_1, ..., b_{2m+1}$ and then outputs the bit that appeared the most (i.e. at least m + 1 times).

2. Give a lower bound on $Pr[\mathcal{A}'(G(k)_{1\cdots i-1}) = G(k)_i]$, for all $k \in \{0,1\}^s$. It may be useful to recall Hoeffding's inequality for Bernoulli variables: let X_1, \ldots, X_{2m+1} be independent Bernoulli random variables, with $Pr[X_i = 1] = 1 - Pr[X_i = 0] = p$ for all *i*, and let $S = X_1 + \cdots + X_{2m+1}$. Then, for all x > 0, we have

$$Pr[|S - \mathbb{E}(S)| \ge x\sqrt{2m+1}] \le 2e^{-2x^2}$$

- 3. What should be the value of *m* (depending on ϵ) if we want that $Pr[\mathcal{A}'(G(k)_{1 \dots i-1}) = G(k)_i] \ge 0.999$ for all *k*? It may be useful to know that $e^{-8} \le 0.0005$.
- 4. Do we have $PREDAdv_{(A')} \ge 0.999$ if $Pr[A'(G(k)_{1 \dots i-1}) = G(k)_i] \ge 0.999$ for all *k*?

5. What condition on ϵ do we need to ensure that \mathcal{A}' runs in polynomial time?

Let now \mathcal{A} be an attacker such that

$$\operatorname{Adv}(\mathcal{A}) = Pr_{k \leftarrow \mathcal{U}(\{0,1\}^s)}[\mathcal{A}(G(k)_{1 \cdot \cdot i-1}) = G(k)_i] \ge \frac{1}{2} + \epsilon$$

Note that we are now looking at the definition of advantage given in class, where the probability also depends on the uniform choice of *k*. We want to show that in this case, we cannot always amplify the success probability of the attacker by repeating the computation.

In the following, we write $Pr[\mathcal{A}(G(k)_{1\cdots i-1}) = G(k)_i]$ when we only consider the probability over the internal randomness of \mathcal{A} (and k is fixed) and $Pr_{k\leftarrow \mathcal{U}(\{0,1\}^s)}[\mathcal{A}(G(k)_{1\cdots i-1}) = G(k)_i]$ when we consider the probability over the choice of k and the internal randomness of \mathcal{A} .

Suppose that $s \ge 2$ and define

$$G(k) = \begin{cases} 00\cdots 0, & \text{if } k_0 = k_1 = 0\\ G_0(k), & \text{otherwise,} \end{cases}$$

where G_0 is a secure PRG from $\{0,1\}^s$ to $\{0,1\}^n$.

- 6. Show that there exists a PPT attacker A with non negligible advantage (for the unpredictability definition) against *G*.
- 7. Show on the contrary that there is no PPT attacker \mathcal{A} with $Adv(\mathcal{A}) \geq \frac{7}{8}$ (assuming that G_0 is a secure PRG).